Topic Includes : Inheritance

The objectives of this chapter are:

» TO explore the concept and implications of inheritance
® Polymorphism

» To define the syntax of inheritance in Java

» To understand the class hierarchy of Java

« TO examine the effect of inheritance on constructors

Introduction

» Inheritance is a fundamental Object Oriented concept

» A class can be defined as a "subclass" of another class.
« The subclass inherits all data attributes of its superclass
® The subclass inherits all methods of its superclass
® The subclass inherits all associations of its superclass

s The subclass can: superclass Person
: : - . Stri
@ Add new functionality i QiﬁeDate””g
@ Use inherited functionality
e Override inherited functionality T

subclass Emp|oyee

- employeelD: int
- salary: int

- startDate: Date

What really happens?

« When an object is created using new, the system must
allocate enough memory to hold all its instance variables.
® This includes any inherited instance variables

« In this example, we can say that an Employee "is a kind of"

Person.

® An Employee object inherits all of the attributes, methods and
associations of Person

Person rerson Jof
- name: String ”anf‘e,,‘ onn
- dob: Date Smith
dab = Jan 13, 1954
Employee
: : name = "Sally Halls"
T'S a kind of dob = Mar 15, 1968
Employee employeelD = 37518
- employeelD: int salary = 65000
- salary: int startDate = Dec 15,
- startDate: Date 2000

Inheritance in Java

« Inheritance is declared using the "extends" keyword
® [f inheritance is not defined, the class extends a class called Object

public class Person

{

private String name;
private Date dob;

[.]

Person
- name: String
- dob: Date

T

public class Employee extends Person

{ Employee
private int employelD:; - employgeID: int
private int salary; - salary: int
private Date startDate; - startDate: Date

[.]

Employee anEmployee = new Employee();

Application: Inheritance Hierarchy

« Each Java class has one (and only one) superclass.

C++ allows for multiple inheritance

Inheritance creates a class hierarchy

® Classes higher in the hierarchy are more general and more abstract
® Classes lower in the hierarchy are more specific and concrete

s Thereis no limit to the
number of subclasses a class
can have

« There is no limit to the depth
of the class tree.

| Class
A
Class Class Class
Class Class Class

T

Class

The class called Object

» At the very top of the inheritance tree is a class called Object

« All Java classes inherit from Object.
® All objects have a common ancestor
® This is different from C++

« The Object class is defined in the java.lang package
® Examine it in the Java API Specification

Object

Constructors and Initialization

« Classes use constructors to initialize instance variables

® \When a subclass object is created, its constructor is called.

® |t is the responsibility of the subclass constructor to invoke the
appropriate superclass constructors so that the instance variables
defined in the superclass are properly initialized

» Superclass constructors can be called using the "super"
keyword in a manner similar to "this"

s It must be the first line of code in the constructor

» If & call to super is not made, the system will automatically
attempt to invoke the no-argument constructor of the
superclass.

Constructors - Example

public class BankAccount

{
private String ownersName;
private int accountNumber;
private float balance;

public BankAccount(int anAccountNumber, String aName)

{

accountNumber = anAccountNumber;
ownersName = aName;

}
[.]

public class OverdraftAccount extends BankAccount

{

private float overdraftLimit;

public OverdraftAccount(int anAccountNumber, String aName, float aLimit)

{

super(anAccountNumber, aName);
overdraftLimit = aLimit;

Method Overriding

» Subclasses inherit all methods from their superclass

8 Sometimes, the implementation of the method in the superclass does
not provide the functionality required by the subclass.

® |In these cases, the method must be overridden.

» To override a method, provide an implementation in the
subclass.

® The method in the subclass MUST have the exact same signature as
the method it is overriding.

Method overriding - Example

public class BankAccount

{

private String ownersName;
private int accountNumber;
protected float balance;

public void deposit(float anAmount)

{
if (@anAmount>0.0)
balance = balance + anAmount;
}
public void withdraw(float anAmount)
{
if (@nAmount>0.0) && (balance>anAmount))
balance = balance - anAmount;
}
public float getBalance()
{
return balance;
}

Method overriding - Example

public class OverdraftAccount extends BankAccount

{

private float limit;

public void withdraw(float anAmount)

{
if (@nAmount>0.0) && (getBalance()+limit>anAmount))

balance = balance - anAmount;

Object References and Inheritance

» Inheritance defines "a kind of" relationship.
® |n the previous example, OverdraftAccount "is a kind of" BankAccount

» Because of this relationship, programmers can "substitute"
object references.

® A superclass reference can refer to an instance of the superclass OR an
iInstance of ANY class which inherits from the superclass.

BankAccount anAccount = new BankAccount(123456, "Craig");

BankAccount accountl = new OverdraftAccount(3323, "John", 1000.0);

BankAccount
name = "Craig"
accountNumber = 123456

OverdraftAccount

name = "John"
accountNumber =
account 3323

limit = 1000.0

